
CS103 Handout 26
Spring 2015 May 27, 2015

Problem Set 8

What problems are beyond our capacity to solve? Why are they so hard? And why is anything that
we've discussed this quarter at all practically relevant? In this problem set, you'll explore the abso-
lute limits of computing power.

As always, please feel free to drop by office hours, ask questions on Piazza, or send us emails if you
have any questions. We'd be happy to help out.

This problem set has 43 possible points. It is weighted at 6% of your total grade. This is slightly
higher than usual because this problem set also contains a quick cumulative review problem at the
end.

Good luck, and have fun!

Due Wednesday, June 3 at the start of lecture.

No late submissions accepted. No late days may be used.

Problem One: Closure Properties of RE (5 Points)
This question explores various closure properties of RE. Because RE corresponds to recognizable prob-
lems, languages in RE are precisely the languages for which you can write a method

bool inL(string w)

such that

• for any string w ∈ L, calling inL(w) returns true.

• for any string w ∉ L, calling inL(w) either returns false or loops infinitely without returning.

This means that we can reason about closure properties of the decidable languages by writing actual
pieces of code.

i. Let L₁ and L₂ be recognizable languages over the same alphabet Σ. Prove that L₁ ∩ L₂ is also rec-
ognizable. To do so, suppose that you have methods inL1 and inL2 matching the above condi-
tions, then show how to write a method inL1nL2 with the appropriate properties. Then, write a
short proof explaining why your method has the required properties.

The RE languages are also closed under union. Let's imagine that we have two recognizable languages L₁
and L₂ that are in RE and that we have methods inL1 and inL2 matching the above properties. Below is
an incorrect construction that purportedly is a recognizer for L₁ ∪ L₂:

bool inL1uL2(string w) {
return inL1(w) || inL2(w);

}

ii. Give concrete examples of languages L₁ and L₂ and implementations of methods inL1 and inL2
such that the above piece of code is not a recognizer for L₁ ∪ L₂. Justify your answer.

To show closure under union, it's easier to use the fact that the RE languages are precisely the verifiable
languages. A language L is an RE language precisely if it's possible to write a method named

bool imConvincedIsInL(string w, string c)

with the following properties:

• This function always returns a value.

• If w ∈ L, then there is some choice of c where calling imConvincedIsInL(w, c) returns true.

• If w ∉ L, then calling imConvincedIsInL(w, c) returns false for all choices of c.

Take a few minutes to make sure you understand why these properties mean that the method is a verifier
for the language L.

iii. Let L₁ and L₂ be recognizable languages over the same alphabet Σ. Using the verifier definition
of RE, prove that L₁ ∪ L₂ is also recognizable. To do so, suppose that you have methods imCon-
vincedIsInL1 and imConvincedIsInL2 matching the above conditions, then show how to write
a method imConvincedIsInL1uL2 with the appropriate properties. Then, write a short proof ex-
plaining why your method has the required properties.

Problem Two: Password Checking (6 Points)
Let p ∈ Σ* be a string and consider the following language:

L = { ⟨M⟩ | M is a TM and ℒ(M) = {p} }

In the previous problem set, you proved that L ∉ R. In this problem, you'll prove that L ∉ RE.

Let's suppose for the sake of contradiction that L ∈ RE. This means that there must be some verifier for
the language L. In software, we can express that verifier as a function

bool imConvincedIsPasswordChecker(string program, string c)

with the following properties:

• This function always returns a value.

• If program is a password checker, then there is some choice of c where calling imConvincedIs-
PasswordChecker(program, c) returns true.

• If program is not a password checker, then calling imConvincedIsPasswordChecker(program,
c) returns false for all choices of c.

We can now try to write a self-referential program that uses the above function to cause a contradiction.
Here's a first attempt:

bool imConvincedIsPasswordChecker(string program, string certificate) {
/* … some implementation … */

}
int main() {

string me = mySource();
string input = getInput();

for (int i = 0 to infinity) {
for (each string c of length i) {

if (imConvincedIsPasswordChecker(me, c)) {
accept();

}
}

}
}

This code is, essentially, a minimally-modified version of the self-referential program we used to get a
contradiction for the language LOOP.

i. Suppose that this program is a valid password checker. Briefly explain why running this program
leads to a contradiction.

ii. Suppose that this program is not a valid password checker. Briefly explain why running this pro-
gram does not lead to a contradiction.

iii. Modify the code above to address the deficiency you identified in part (ii). Then, briefly explain
why your modified program leads to a contradiction regardless of whether it's a valid password
checker.

iv. Formalize your argument in part (iii) by proving that L ∉ RE. Use the proof that LOOP is not an
RE language as a template.

Problem Three: Equivalent TMs (4 Points)
If you've taken CS106A, CS106B, or CS107, you've probably noticed that we have a lot of section lead-
ers and TAs on staff. This is partially so that we can provide lots of one-on-one support and assistance in
those courses, but part of it is also due to the fact that it's really hard to grade programming assignments.
This question explores why.

When teaching a programming class, it would be really nice if we could fully autograde student program-
ming submissions. Ideally, we'd like to be able to write our own reference solution to one of the program-
ming problems, then check, for each student submission, whether that submission is in some way “equiva-
lent” to our reference solution. If it is, then the submission must be correct, and if it isn't, then the submis-
sion must be incorrect.

Let's reformulate this as an equivalent problem about Turing machines. Suppose we have a student-sub-
mitted TM M₁ and a reference TM M₂. We'd like to be able to check whether these TMs have the same
languages, that is, whether ℒ(M₁) = ℒ(M₂). (This isn't perfectly analogous to our original problem, but
it's a close enough match.) We'd like to see whether we can write a TM that can check whether these two
TMs have the same language, and, if not, at least whether we can write a TM that checks whether these
two TMs have different languages.

Consider the following language EQTM:

EQTM = { ⟨M₁, M₂⟩ | M₁ and M₂ are TMs and ℒ(M₁) = ℒ(M₂) }

In other words, EQTM is the set of all pairs of TMs that have the same language.

It turns out that this is a frighteningly hard problem to solve, and in this question you'll see why.

i. Suppose there is a function

bool imConvincedAreEqual(string p1, string p2, string certificate)

that acts as a verifier for EQTM. Design a self-referential program that uses this function to obtain a
contradiction. As a hint, you might want to hard-code one of the arguments to the function.

ii. Using your program from part (i) as a template, write a formal proof that EQTM ∉ RE. (A note: if
you have a copy of the Sipser textbook, in Chapter Five, Sipser proves that this language is not
RE using mapping reductions. You're welcome to read over this proof if you'd like, but your an-
swer to this question should use self-reference rather than mapping reductions.)

Problem Four: The Big Picture (10 Points)
Below is a Venn diagram showing the overlap of different classes of languages we've studied so far. We
have also provided you a list of 12 numbered languages. For each of those languages, draw where in the
Venn diagram that language belongs. As an example, we've indicated where Language 1 and Language 2
should go. No proofs or justifications are necessary – the purpose of this problem is to help you build a
better intuition for what makes a language regular, R, RE, or none of these.

RERREG

ALL

1

2

1. Σ*

2. EQTM (defined earlier in this problem set.)

3. { an | n ∈ ℕ }

4. { an | n ∈ ℕ and is a multiple of 137 }

5. { an | n ∈ ℕ } ∪ { an | n ∈ ℕ and is a multiple of 137 }

6. { 1n+1m 1≟ n+m | m, n ∈ ℕ }

7. { ⟨M⟩ | M is a Turing machine and ℒ(M) = LD }

8. { ⟨M⟩ | M is a Turing machine and ℒ(M) = Ø }

9. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M accepts all strings of length at most n }

10. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M rejects all strings of length at most n }

11. { ⟨M, n⟩ | M is a TM, n ∈ ℕ, and M loops on all strings of length at most n }

12. { ⟨M₁, M₂, M₃, w⟩ | M₁, M₂, and M₃ are TMs, w is a string, and at least two of
 M₁, M₂, and M₃ accept w. }

(We will cover the material necessary to solve the remaining problems on Friday.)

Problem Five: 4-Colorability (4 Points)
An undirected graph G is called 3-colorable if there exists a way to color each the nodes in G one of three
colors such that no two nodes of the same color are connected by an edge. The following language con-
sists of all graphs that are 3-colorable.

3COLOR = { ⟨G⟩ | G is an undirected, 3-colorable graph }

This language is NP-complete. If we have time, we'll sketch a proof of this in Wednesday's lecture.

An undirected graph is called 4-colorable if there is a way to color each of the nodes in G one of four col-
ors so that no two nodes of the same color are connected by an edge. We can formalize the 4-coloring
problem as a language as follows:

4COLOR = { ⟨G⟩ | G is an undirected, 4-colorable graph }

Note that every 3-colorable graph is also 4-colorable, but not all 4-colorable graphs are 3-colorable. In
other words, 3-colorability is a stricter requirement than 4-colorability. However, it is still the case that
4COLOR is NP-complete, and in this problem you will prove this result.

i. Briefly justify why 4COLOR ∈ NP. No formal proof is necessary.

ii. Prove that 4COLOR is NP-hard by proving 3COLOR ≤p 4COLOR. That is, show how to take an ar-
bitrary graph G and construct (in polynomial time) a graph G' such that graph G is 3-colorable if
and only if graph G' is 4-colorable.

For simplicity, you do not need to formally prove that your reduction is correct and runs in poly-
nomial time. Instead, briefly answer each of the following questions about your reduction (two or
three sentences apiece should be sufficient):

1. If the original graph G is 3-colorable, why is your new graph G' 4-colorable?

2. If your new graph G' is 4-colorable, why is the original graph G 3-colorable?

3. Why can your reduction be computed in polynomial time?

As a reminder, the job of a reduction isn't to solve the problem – it's to transform the problem.
Therefore, you don't need to worry about how exactly you'd determine whether G' is 4-colorable
or not. You just need G' to be built so that G' is 4-colorable if and only if G is 3-colorable.

Also, remember that since 4COLOR is a language of undirected graphs, the output of your reduc-
tion should just be a graph, not a graph with any nodes colored. You need to make the graph G'
such that if there is any way to 4-color it, the original graph G is 3-colorable. You can't, for exam-
ple, specify that certain nodes must be certain colors.

Problem Six: Resolving P ≟ NP (8 Points)
This problem explores the question

What would it take to prove whether P = NP?

For each statement below, decide whether the statement would definitely prove P = NP, definitely prove
P ≠ NP, or would do neither. Write “P = NP,” “P ≠ NP,” or “neither” as your answer to each question –
we will not award any credit if you write “true” or “false,” since there are three possibilities for each state-
ment. No justification is necessary.

1. There is a P language that can be decided in deterministic polynomial time.

2. There is an NP language that can be decided in deterministic polynomial time.

3. There is an NP-complete language that can be decided in deterministic polynomial time.

4. There is an NP-hard language that can be decided in deterministic polynomial time.

5. There is an NP language that cannot be decided in deterministic polynomial time.

6. There is an NP-complete language that cannot be decided in deterministic polynomial time.

7. There is an NP-hard language that cannot be decided in deterministic polynomial time.

8. There is a deterministic, polynomial-time verifier for every language in NP.

9. There is a deterministic, polynomial-time decider for every language in NP.

10. There is a language L ∈ P where L ≤p 3SAT.

11. There is a language L ∈ NP where L ≤p 3SAT.

12. There is a language L ∈ NPC where L ≤p 3SAT.

13. There is a language L ∈ P where 3SAT ≤p L.

14. There is a regular language L where 3SAT ≤p L.

15. All languages in P are decidable.

16. All languages in NP are decidable.

Problem Seven: The Big Picture (6 Points)
We have covered a lot of ground in this course throughout our whirlwind tour of computability and com-
plexity theory. This last question surveys what we have covered so far by asking you to see how every-
thing we have covered relates.

Take a minute to review the hierarchy of languages we explored:

REG ⊂ CFL ⊂ P ≟ NP ⊂ R ⊂ RE ⊂ ALL

The following questions ask you to provide examples of languages at different spots within this hierarchy.
In each case, you should provide an example of a language, but you don't need to formally prove that it
has the properties required. Instead, describe a proof technique you could use to show that the language
has the required properties. There are many correct answers to these problems, and we'll accept any of
them.

i. Give an example of a regular language. How might you prove that it is regular?

ii. Give an example of a context-free language is not regular. How might you prove that it is context-
free? How might you prove that it is not regular?

iii. Give an example of a language in P. How might you prove it is in P?

iv. Give an example of a language in NP that is not known to be in P. How might you prove that it is
in NP? Why don't we know whether it's in P?

v. Give an example of a language in RE not contained in R. How might you prove that it is RE?
How might you prove that it is not contained in R?

vi. Give an example of a language that is not in RE. How might you prove it is not contained in RE?

Extra Credit Problem: P ≟ NP (Worth an A+, $1,000,000, and a Stanford Ph.D)
Prove or disprove: P = NP.

